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The demand for reproducibility has reached fever pitch in scientific
research (Baker, 2015), in particular in the field of psychology where
many classic studies of human behaviour have not readily replicated
(Klein et al., 2014). There are many explanations for poor replication, in-
cluding subject selection bias, poor experimental control, inconsistent
measurement, demand characteristics, post-hoc cherry picking of
significant results, partial reporting and inadequate consideration of
statistical power. While, all of these potential problems can also emerge
in clinical neuroimaging, a lax statistical approach remains one of the
most pernicious sources of error in our field.

Statistical issues have been discussed at length within the neuroim-
aging field in recent years, particularly in relation to procedures for
correcting for multiple comparisons (Carter et al., 2016; Poldrack
et al., 2008; Woo et al., 2014). Here we focus on multiple comparisons
across image voxels, although the problem can become exacerbated
when multiple hypotheses (contrasts) are tested at each voxel. While
the issue of multiple comparisons is not new, it is clear that there is
increasing concern that the application of relatively liberal statistical
thresholds for declaring statistical significance is reducing confidence
in reported effects, mainly due to weak control over the risk of false
positive results. This concern is amplified in the clinical setting, where
imaging plays an ever-increasing role in diagnosis and monitoring.
Neuroimage: Clinical has therefore taken the decision to require mini-
mum standards for correction for multiple comparisons when consider-
ing manuscripts. Manuscripts that do not meet these basic standards
will normally not be considered for publication and will be returned
to authors without review. Exceptions to this policy will only be made
in rare cases, for example exploratory studies in particularly rare
populations.

In addition to our desire to publish high quality science and reliable
results, there is also a practical motivation for this decision. In our expe-
rience, manuscripts that do not meet these standards are invariably
reviewed unfavourably, resulting in extra workload for authors and re-
viewers. We hope that by adopting a few basic standards we will not
only increase the reliability of the results published in Neuroimage:
Clinical, but also improve the efficiency of the review process for
everyone.

Broadly speaking there are two areas of concern in relation to proce-
dures used to control the family-wise error (FWE) rate (i.e. the probabil-
ity of obtaining false positive results in a “family” of multiple tests):
cluster-based inference and peak- or voxel-based inference. Our discus-
sion mainly relates to magnetic resonance imaging (MRI) as the major-
ity of submissions to our journal use this technique. However the same
principles apply to other forms of neuroimaging in which large numbers
of measurements are acquired (including, but not limited to: positron
emission tomography, single-photon emission computed tomography,
electroencephalography, magnetoencephalography and near infrared
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spectroscopy), or when comparisons are made across many nodes or
edges of a brain network derived from neuroimaging data. For electro-
physiological data modalities (magnetoencephalography and electro-
encephalography) we would recommend that authors adhere to the
best practice guidelines outlined by Gross et al. (2013), and pay partic-
ular attention to recommendations in relation to the reporting of con-
nectivity analyses.

1. Cluster-based inference

Cluster-based inference is one of the most commonly used methods
to correct for multiple comparisons in submissions to Neuroimage:
Clinical and is usually applied at the whole-brain level. This involves
creating a statistical image (often a t-contrast) by setting an initial
cluster-forming height threshold at some uncorrected P-value, and de-
fining a minimum size that the resulting clusters of contiguous voxels
must reach to be considered significant (though see “Complementary
Methods” below and Smith and Nichols (2009) for discussion of an alter-
native approach known as threshold-free cluster enhancement: TFCE).
A variety of principled procedures are available to determine whether
the clusters that exceed that exceed the initial height threshold are sta-
tistically significant.

With this procedure the inference is made at the level of the entire
cluster. While not central to the argument we wish to make in this
editorial, it is worth briefly highlighting one of the drawbacks of
cluster-based inference. If the initial height threshold results in very
large clusters that encompass several brain regions then anatomical
specificity is compromised, as inferences cannot be made about individ-
ual areas within clusters. While anatomical specificity may not be a cen-
tral issue for some studies (i.e. those interested in whether an effect
exists in the brain, rather than where), this remains a fundamental con-
straint on cluster-based inference. We recommend that authors do not
incorrectly draw additional conclusions based on local results (e.g.
reporting peak coordinate statistics) within a large cluster when using
cluster-based inference.

One method for performing cluster-based inference is to set both the
initial cluster-forming height threshold and the minimum cluster size
arbitrarily. For example P = 0.005 (uncorrected), minimum cluster
size 10 voxels has been recommended by some authors and is a de-
fault in some software tools (Lieberman and Cunningham, 2009).
The problem with this unprincipled approach is that the correspond-
ing FWE rate is unknown. And, more troubling, recent work has esti-
mated the FWE rate for common implementations of this procedure
to be between 60% and 90% (Eklund et al., 2016). Another problem is
that clusters can vary dramatically in size depending on the size of
the voxels (e.g. a 10-voxel cluster with 1 mm isotropic voxels is 27
times smaller than one with 3 mm isotropic voxels). Due to these
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problems, Neuroimage: Clinical will not consider submissions that
rely on such ad-hoc procedures to draw inferences.

It is important to note that the reporting of tables of statistical results
using an arbitrary cluster-forming height threshold and arbitrary
minimum cluster size is not in itself problematic. Indeed, we encour-
age this practice as such tables can be used for both exploratory anal-
yses (Lieberman and Cunningham, 2009) and to facilitate meta-
analysis (Eickhoff et al., 2012) (and we also encourage the sharing
of unthresholded statistical maps through formal repositories such as
www.neurovault.org (Gorgolewski et al., 2016) or others (Eickhoff
et al., 2016)). However, inferences should only be made on results
that survive correction for multiple comparisons using a statistically
principled approach.

There are several different methods that are readily available that do
rely on sound statistical principles to set the minimum extent threshold
for cluster-based inference. These include random-field theory, permu-
tation testing and Monte-Carlo simulation. We do not advocate any
particular method or software package, and will consider manuscripts
that use any of these approaches, provided that the method in question
has been validated. However, the effectiveness with which some of
these principled techniques control the FWE rate has been called into
question, especially when the cluster-forming height threshold is liberal
(P = 0.01 uncorrected or more liberal) (Eklund et al.,, 2016; Woo et al,,
2014). Such liberal cluster-forming height thresholds also increase the
cluster size, increasing the chance that clusters will encompass more
than one region, which limits anatomical specificity as discussed
above. When the cluster-forming height threshold is set at P = 0.001
the false positive rates, while in some cases inflated, are closer to 5%
(Eklund et al., 2016; Woo et al., 2014). Therefore we encourage the
use of more stringent initial height thresholds unless permutation test-
ing is used to control the FWE rate.

2. Voxel-based inference

Voxel-level results (usually presented as the peaks of clusters), like
cluster-level results, require statistically principled correction for multi-
ple comparisons. Although it is rare for submissions to Neuroimage:
Clinical to make inferences from uncorrected voxel-level P-values, or
simply to use an arbitrary uncorrected P-value (e.g. P = 0.001) as a
threshold for significance, it is worth stating that this is not good prac-
tice as the FWE rate is unknown. Neuroimage: Clinical will not consider
submissions that draw inferences from uncorrected P-values.

In general, voxel-based correction for multiple comparisons is
regarded as less powerful than cluster-based correction (Friston et al.,
1996), though with this reduced power comes greater spatial precision
on the location of effects. The level of correction required for whole-
brain voxel-based analyses is very severe, and in our experience manu-
scripts submitted to Neuroimage: Clinical rarely use this approach.
Instead, it is common for authors to apply an adjustment for small vol-
ume, which effectively limits the search space to one or more a priori
specified regions of interest (ROIs), substantially reducing the severity
of the correction (but also limiting anatomical inference to the volume
of the ROIs). Small-volume adjustment can also be used for cluster-
based inference but this is less common in our experience, presumably
because clusters will often extend beyond the boundaries of small ROIs.
When appropriately applied, a small-volume adjustment can be a
perfectly valid inferential method. Indeed, the now mature history of
fMRI experiments, across a range of cognitive tasks in healthy and path-
ological groups, is a reasonable argument that an ROI approach can be
used in order to enhance the sensitivity of analysis. However, there
are a number of practices that undermine its effectiveness.

The main issue relates to the method used to specify the ROIs. An im-
portant assumption of small-volume adjustment is that the method
used to define the ROIs is independent of the analysis on which infer-
ence is made. Procedures that break this assumption suffer from
“non-independence error”, which renders the resulting “corrected”

P-values uninterpretable (Kriegeskorte et al., 2009). The most egre-
gious practice of this type is to draw the ROIs after the analysis has
been conducted, using the co-ordinates of the peak of the observed
cluster to specify the centre of the ROI. Neuroimage: Clinical will not
consider submissions that make this error. This is an example of a
questionable research practice known as “selecting hypothesised
areas after results are known” (SHARKing), which also occurs in
less obvious forms (Poldrack et al., 2016). Therefore manuscripts
submitted to Neuroimage: Clinical that make use of small-volume
adjustment must state explicitly in the methods section how the
ROIs were constructed, and additionally make it clear that they
were specified independently of the results that are used to draw
inferences.

Another approach for reducing the size of the search space for voxel-
wise analysis involves executing an independent (orthogonal) contrast
to the one used to draw inferences, and then using this as a mask (for
example, only analysing interactions in regions that also show main
effects). Again, this can also be applied to cluster-based correction.
However, this approach is also vulnerable to non-independence error;
for example if groups are of unequal sizes, any main effect across the
groups will be biased towards effects that occur in the larger group
(Kriegeskorte et al., 2009). Submissions to Neuroimage: Clinical must
therefore provide sufficient information to allow the reader to under-
stand precisely how any masks were constructed.

The final issue concerns the use of multiple independent ROIs. In
itself this is not problematic — in many experiments it is quite plausible
to hypothesise that a number of different regions might be activated by
a task or differ between groups. However, if several ROIs are applied
separately within the same analysis, this obviously increases the num-
ber of independent comparisons and therefore the FWE rate. For exam-
ple, if five regions of the brain are considered to be of a priori interest,
each defined on both the left and the right side, and each of these ten
ROIs is used separately for small volume adjustment, then the FWE
rate will be raised approximately 10-fold. There are two straightforward
solutions to this issue: 1) Combining all ROIs into a single mask (which
increases the severity of the correction applied within each RO, as the
search space increases in size); 2) Correcting for the number of separate
ROIs applied, for example with a Bonferroni procedure.

3. Complementary methods

A fundamentally different approach for characterizing the error
rates associated with multiple comparisons involves an estimation of
the false discovery rate (FDR) (Benjamini and Hochberg, 1995). In the
neuroimaging setting, FDR is designed to control the proportion of
false positive voxels among the set of voxels that are labeled as showing
significant results. It has gained rapid adoption for statistical testing in
genomic studies, which face many of the same challenges resulting
from multiple hypotheses testing as neuroimaging. There are a number
of techniques for estimating the FDR at either the peak or cluster level of
inference (Chumbley and Friston, 2009; Genovese et al., 2002).

Another alternative approach is TFCE (Smith and Nichols, 2009), a
cluster-based inference method that removes the dependence on an ar-
bitrary initial cluster-forming height threshold. TFCE considers all possi-
ble cluster-forming thresholds, and then creates an image summarising
the cluster-wise evidence at each voxel. It can be more powerful than
standard cluster-based methods, and is more spatially precise, as all
cluster-forming thresholds are considered.

We expect these complementary approaches to be increasingly uti-
lized by the neuroimaging community and encourage authors to be-
come familiar with them.

In addition to these alternative statistical techniques, there are
two other important strategies to reduce study bias. The first is
pre-registration, in which the study design, analysis plan, predic-
tions and boundary conditions are established a priori. This is com-
mon in clinical trials and there is no reason that strong predictions
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cannot be defined in clinical neuroimaging studies. Pre-registration of
ROIs may be particularly useful as it guards against SHARKing. The sec-
ond strategy is replication, which we have previously encouraged
(Fletcher and Grafton, 2013). Replication has become a de facto require-
ment for many genetic studies, another field where false positive rates
can be high, and Neuroimage: Clinical welcomes direct attempts at rep-
lications of previous studies.

4. Conclusion

We have discussed a number of statistical issues that, in our experi-
ence as editors at Neuroimage: Clinical, arise frequently during reviews
for manuscripts submitted to our journal. Many of these practices
invariably result in negative reviewer comments and rejection of
manuscripts. Our intention here is not to be unduly prescriptive, and
we recognise that different techniques will be appropriate for different
experiments. However, manuscripts that do not meet even a bare min-
imum of statistical rigour, as outlined above, will normally be returned
to authors without review.
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